博客
关于我
3万字总结,Mysql优化之精髓
阅读量:413 次
发布时间:2019-03-06

本文共 839 字,大约阅读时间需要 2 分钟。

数据库优化是提升应用性能的关键环节,尤其是在处理大量数据和复杂查询时。以下是一些具体的优化方法和策略,帮助你更好地实现数据库性能提升。

为什么要优化

  • 性能瓶颈:数据库访问速度是系统性能的主要瓶颈,优化数据库能够显著提升整体应用的运行效率。
  • 数据增长:随着数据量的增加,处理时间会变慢,优化数据库可以应对数据增长带来的性能挑战。
  • 存储限制:数据存放在磁盘上,读写速度无法与内存相比,通过优化减少磁盘IO操作可以提升性能。

如何优化

1. 数据库设计

  • 表和字段设计:合理设计数据库表结构,选择适当的字段类型,避免冗余字段。
  • 存储引擎选择:InnoDB是推荐选择,支持事务和外键。
  • 索引设计:合理设计索引,覆盖常用查询字段,避免全表扫描。

2. SQL 优化

  • 使用explain:分析复杂查询的执行计划,避免不必要的操作。
  • 减少全表扫描:避免使用like查询开头,尽量使用索引。
  • 分页优化:使用limit和offset结合查询,减少数据传输量。

3. 分区和集群

  • 分区:将大表分成多个小表,提升查询效率。
  • 主从复制:通过读写分离,提升数据库性能。
  • 负载均衡:使用工具如MyCat或Shardingsphere,实现横向扩展。

4. 查询缓存

  • 开启缓存:通过配置文件开启MySQL的查询缓存。
  • 管理缓存:定期清理缓存,避免缓存失效影响性能。

5. 性能监控

  • 慢查询日志:记录执行时间过长的查询,定期优化。
  • ** profiler**:分析数据库性能,找出性能瓶颈。

典型优化案例

  • 查询优化:通过分析执行计划,优化查询结构,减少索引使用率。
  • 分页处理:使用limit和offset结合查询,提升性能。
  • 索引设计:针对常用查询字段设计复合索引,提升查询效率。

注意事项

  • 数据类型选择:避免使用大对象类型,选择适合的类型。
  • 索引管理:定期清理无用索引,避免索引过多影响性能。
  • 监控和维护:定期监控数据库性能,及时优化。

通过以上方法,可以显著提升数据库性能,减少瓶颈,提高整体系统的运行效率。

转载地址:http://nfokz.baihongyu.com/

你可能感兴趣的文章
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>